
A Specialized Framework for Data Retrieval Web Applications

Jerzy M. NOGIEC, Kelley TROMBLY-FREYTAG, Dana WALBRIDGE
 Fermi National Accelerator Laboratory

Batavia, IL 60510, USA

ABSTRACT

Although many general-purpose frameworks have

been developed to aid in web application development,
they typically tend to be both comprehensive and
complex. To address this problem, a specialized server-
side Java framework designed specifically for data
retrieval and visualization has been developed. The
framework’s focus is on maintainability and data
security. The functionality is rich with features
necessary for simplifying data display design,
deployment, user management and application
debugging, yet the scope is deliberately kept limited to
allow for easy comprehension and rapid application
development. The system clearly decouples the
application processing and visualization, which in turn
allows for clean separation of layout and processing
development. Duplication of standard web page
features such as toolbars and navigational aids is
therefore eliminated. The framework employs the
popular Model-View-Controller (MVC) architecture,
but it also uses the filter mechanism for several of its
base functionalities, which permits easy extension of
the provided core functionality of the system.

Keywords: Framework, Web Application, Data
Retrieval, JSP, Servlet.

1.WEB APPLICATION FRAMEWORKS

 Many web application frameworks have been
developed and more are appearing every day. Web
applications are fundamentally suited to the framework
concept, because they deal with the presentation of data
in a consistent logical manner for human viewing. The
repetitive aspect of presentations (navigation bars,
headers, footers, etc) requires a degree of structure that
makes traditional presentation applications (HTML,
JSP) difficult to maintain and change.

Frameworks can supply the basis for abstracting the
human factors of the design out of the basic
presentation of the data, and allow each unit of data
presentation to stand on its own. Frameworks, such as
Struts [1], provide partitioning and modularity,
separation of tasks, improved code manageability, and
more extensible and adaptable code.

The framework being described is specialized on
numerical data retrieval and display. It uses JSP tags to
provide a simple mechanism to query data from a
database, and display the query results in several forms:
tables, charts and Microsoft Excel spreadsheets. It also
provides assorted administrative functionality, such as
user authentication and page-granularity access control,
embedded debugging mechanisms, and a coarse to fine-
grained logging system.

Figure 1. Framework architecture.

 2. ARCHITECTURE

The framework is based on the MVC pattern and
therefore uses one central servlet to handle all incoming
requests (Figure 1). This means there is a single point
of entry for the whole application and the maintenance
of the application is simplified. The business logic of
the application is supplied in a number of processor
objects to which processing is delegated by the
framework when the request is dispatched. This
significantly reduces the complexity of the controller
and removes the maintenance problems of the
traditional front controller.

 The principle feature of the framework is an action
mapping mechanism that controls data processing,
layout and page flow. The controller passes control to
the processor, which accesses the data sources and
performs the necessary data manipulations and
processing. The mapping of requests to processors and
output pages is configuration driven (see a processing
specification for an example request in Figure 2.) and
allows for independent specification of the page flow
for both successful and erroneous outcomes.

FERMILAB-Conf-04/073-TD July 2004

 Figure 2. A request processing specification.

The configuration file provides a single resource that
defines all of the site navigation. Selection of
processing and displays are limited to the configuration
and no re-programming of the controller servlet is
needed. Since the controller handles view selection, it
can consistently apply templates and security policies
across all views. The JSP is simply responsible for
retrieving any objects or beans that may have been
previously created by the processor, and extracting the
dynamic content for insertion within static templates.

Views use virtual links rather than hard coded ones to
remove the dependencies between views so they can be
reused or modified freely. Hence, the application
scalability is greatly improved.

Figure 3. User authentication information.

2. AUTHENTICATION AND ACCESS CONTROL

The framework supplies an integrated authentication
and access authorization mechanisms, which are based
on groups and permissions. Access to various parts of
the application or its functionality can be easily
controlled, with the access granularity defined to the
level of a single page. The authentication mechanism is
implemented as a filter with access control policies are
enforced by the controller. The controller will allow for
serving a request if the user belongs to a group listed
for this request. Each user can, of course, belong to
several groups. In addition, one can specify a separate
set of application specific attributes for each user,
which can be then used to further specify various

application access rights the user was granted (Figure
3). For instance, some users may be allowed to modify
entries made by others, whereas other users may not.
Either a database or an XML file can be used for
storing authentication and authorization data.

The same filter mechanism is also used for logging and
auditing and allows for tracking users of the web
application and gathering their use profiles as well as
allowing security monitoring and auditing. Various
levels of logging detail are provided, initial values of
which are set in the application parameters. These can
be altered at run time. Logging output can be sent either
to the console or a file or both.

 Figure 4. Example charting output.

3. DATA ACCESS AND VISULIZATION

The framework focuses on database access and data
presentation with built-in support from a customized tag
library. Database connection pooling allows for optimal
use of resources. Tags allow for database access,
graphic (Figure 4) and tabular data visualization and
reformatting the data into Excel format. Data drill-down
data capabilities are also supported.

 The framework’s core tag library provides tags to
obtain and visualize data. It consists of several tags
divided into three functional areas: debug, query and
display. The debug tag gives a mechanism to provide
debugging information to be displayed when the
application’s debug flag is set (this can be set on the
fly). This allows for more convenient testing, with less
of the JSP edit-refresh-edit cycling.

 The query and substitute tags allow for flexible
creation and execution of database queries. The
substitute tag allows the simple substitution of request

<request
 id="DayView"
 processor="calendar.DateProcessor"
 success="/DayView.jsp"
 title="DayView"
 layout="/MainLayout.jsp"
 error="/Error.jsp"
 access="system"
/>

<login
 name="Jerry"
 password="mypassword"
 access="user|admin"
 attribute="reader"
 />

variables within a string (a database query) by marking
the word to be substituted with a ^. Should this
character be needed as a literal within the query, the
substitute tag has an attribute that allows you to choose
the substitution character. The query tag sends the
string in its “in” attribute to be executed by the
database, and names the results with the “out” attribute.
The data display tags use these results as input
arguments.

The various database connection parameters are
supplied in the application configuration file. This
framework can use any database for which a JDBC
support is available. At this time, connection to only
one database per application is supported.

4. LAYOUT MECHANISM

The presentation of data is supported in the framework
by a layout mechanism based on templates and
implemented as a tag library. Layouts can be
independently defined for single pages or can be shared
among multiple pages.

The template mechanism is implemented in a tag library
that consists of three tags: insert, put and get. The insert
tag provides the mechanism for linking the various
generic parts of a page layout (header, footer, etc.) with
the JSP pages that will render their output. When used
with context variables, this creates a powerful
mechanism to provide a single layout for use within the
entire web application. The insert tag takes as a
parameter the JSP template page it is providing the
values for. Within the insert tag, the put tag is used to
define the actual values for the generic layout parts.
The definition of these parts are totally within the
developer control, and are not limited to “header”,
“footer” etc. When the parts have been defined, the
specified layout JSP is displayed. The get tag is used
within the specified layout JSP, to obtain the values set
in the insert tag for those generic sections of the layout.

5. DEBUGGING AND ERROR HANDLING

Extensive, built-in debugging features allow for easy
troubleshooting and aid in development of applications.
The framework uses debugging levels to determine the
required amount of generated debug information and
permits independent control of debugging levels for
different functional aspects of the application, with the
debug output sent to either/or files as well as the
console. In addition, all pages have an embedded
debugging visualization, the display of which can be
controlled on the fly, without restarting the application.

The tag libraries included in the framework provide
tracking parameters, as well as session and application
states.

6. APPLICATIONS

The framework has been successfully employed in the
development of such data-centered applications as the
Accelerator Component Test Result Report System to
access results of magnetic measurements [2][3] and the
Operations Activity Calendar utility (Figure 5) and the
Group Planning utility, where it proved to be both
powerful and easy to use.

Figure 5. A calendar application.

7. CONCLUSIONS

The presented framework greatly simplifies

development of data-centered web applications. It
succeeded in reducing maintenance efforts of such
applications by consolidating application data flow and
processing in a single XML configuration file. This
data-driven approach combined with a set of tag
libraries allowed for practically eliminating Java coding
from JSP and produced an easy to understand and
maintain system. Although, the framework is targeted at
data processing applications it can be, in its simplest
form, also used for organizing static web site contents,
allowing for use of logical pointers instead of hard-
coded hyperlinks.

8. REFERENCES

[1] http://jakarta.apache.org/struts/
[2] J.M. Nogiec et al, “A Flexible and Configurable

System to Test Accelerator Magnets”, PAC’01,
Chicago, 2001

 [3] J.M. Nogiec et al, “Hierarchical Data Archival
System for EMS”, PCaPAC’02, Frascatti, Italy,
2002

